Genetic and structural analyses of cytoplasmic filaments of wild-type Treponema phagedenis and a flagellar filament-deficient mutant.

نویسندگان

  • J Izard
  • W A Samsonoff
  • M B Kinoshita
  • R J Limberger
چکیده

Unique cytoplasmic filaments are found in the treponeme genus of spirochete bacteria. Their function is unknown, but their location underneath the periplasmic flagellar filaments (PFF) suggests a role in motility and/or cell structure. To better understand these unique structures, the gene coding for the cytoplasmic filaments, cfpA, was identified in various treponemal species. Treponema phagedenis cfpA was 2,037 nucleotides long, and the encoded polypeptide showed 78 to 100% amino acid sequence identity with the partial sequence of CfpA from T. denticola, T. vincentii, and T. pallidum subsp. pertenue. Wild-type T. phagedenis and a PFF-deficient isolate were analyzed by electron microscopy to assess the structural relationship of the cytoplasmic filaments and the PFF. The number of cytoplasmic filaments per cell of T. phagedenis (mean, 5.7) was compared with the number of PFF at each end of the cell (mean, 4.7); the results suggest that there is no direct one-to-one correlation at the cell end. Moreover, a structural link between these structures could not be demonstrated. The cytoplasmic filaments were also analyzed by electron microscopy at different stages of cell growth; this analysis revealed that they are cleaved before or during septum formation and before the nascent formation of PFF. A PFF-deficient mutant of T. phagedenis possessed cytoplasmic filaments similar to those of the wild type, suggesting that intact PFF are not required for their assembly and regulation. The extensive conservation of CfpA among pathogenic spirochetes suggests an important function, and structural analysis suggests that it is unlikely that the cytoplasmic filaments and the flagellar apparatus are physically linked.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insertional inactivation of Treponema denticola tap1 results in a nonmotile mutant with elongated flagellar hooks.

The treponemal fla operon is comprised of numerous motility-related genes; however, the initial gene of this operon, tap1, has no known function. A recently developed system to generate specific mutants in Treponema denticola was utilized to determine if Tap1 was essential for motility. T. denticola tap1 and flanking DNA were identified, cloned, and sequenced, and a suicide plasmid that contain...

متن کامل

Pathogenicity of Treponema denticola Wild-Type and Mutant Strain Tested by an Active Mode of Periodontal Infection Using Microinjection

The available passive mode of periodontal infections in mice requires high efficiency of bacterial attachment and invasiveness and is not always suitable to test the pathogenicity of genetically engineered mutant strains. We developed an active mode of oral infection, using microinjection in the marginal gingiva of mice, to test the pathogenicity of a genetically engineered Treponema denticola ...

متن کامل

The flagellar cytoskeleton of the spirochetes.

The recent discoveries of prokaryotic homologs of all three major eukaryotic cytoskeletal proteins (actin, tubulin, intermediate filaments) have spurred a resurgence of activity in the field of bacterial morphology. In spirochetes, however, it has long been known that the flagellar filaments act as a cytoskeletal protein structure, contributing to their shape and conferring motility on this uni...

متن کامل

The spirochete FlaA periplasmic flagellar sheath protein impacts flagellar helicity.

Spirochete periplasmic flagella (PFs), including those from Brachyspira (Serpulina), Spirochaeta, Treponema, and Leptospira spp., have a unique structure. In most spirochete species, the periplasmic flagellar filaments consist of a core of at least three proteins (FlaB1, FlaB2, and FlaB3) and a sheath protein (FlaA). Each of these proteins is encoded by a separate gene. Using Brachyspira hyodys...

متن کامل

Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium.

A flagellum of Salmonella typhimurium and Escherichia coli consists of three structural parts, a basal body, a hook, and a filament. Because the fliK mutants produce elongated hooks, called polyhooks, lacking filament portions, the fliK gene product has been believed to be involved in both the determination of hook length and the initiation of the filament assembly. In the present study, we iso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 21  شماره 

صفحات  -

تاریخ انتشار 1999